THE 5-SECOND TRICK FOR المعين

The 5-Second Trick For المعين

The 5-Second Trick For المعين

Blog Article

نختار الطريقة المناسبة لحساب مساحة المعين حسب المعطيات الموجودة في المسألة، وسنشرح ذلك بأمثلةٍ في الفقرة التالية..

عند توصيل نقاط المنتصف لأضلاع المعين مع بعضها يمكننا الحصول على مستطيل داخل المعين.

حيث يكون نصف المعين على شكل مثلث متساوي الساقين قاعدته هي قطر المعين، فإن:

ولأنّ المعين يتكون من أربعة أضلاع متساوية فإننا نستطيع أن نصيغ محيط المعين بالقانون التالي : 

يمكن أيضاً حساب ارتفاع المعين اعتماداً على طول أحد أضلاعه، وقيمة المساحة، وقيمة click here إحدى زواياه، وذلك باستخدام المعادلتين الآتيتين:[٣]

مساحة متوازي الاضلاع بكل انواعه مع امثلة توضيحية لحساب المساحة

سعادة السفير / خالد بن حمود بن ناصر القحطاني السيرة الذاتية التواصل مع رئيس البعثة

أدخل البريد الإلكتروني لتتلقى تعليمات حول إعادة تعيين كلمة المرور الخاصة بك.

أقطار المعين عمودية على بعضها وتصنع أربعة مثلثات قائمة من نقطة التقاطع.

المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.

و هو شكل رباعيّ الأضلاع، أضلاعه متساوية، والأضلاع المتقابلة متوازية، لكنّ زواياه غير متساوية، حيث إنّ كل زاويتين متقابلتين متساويتين فقط، بينما المربّع جميع زواياه قائمة، ومتساوية (تسعون درجة). عند تنصيف المعين بخطّ عموديّ وآخر أفقيّ، تنتج لدينا أربع مثلّثات: متساوية الساقين، ومتطابقة.

المعين عبارة عن شكل هندسي ثنائي الأبعاد (طول و عرض)، يتكون من أربع أضلاع (كالمربع و المستطيل).

بالإمكان معرفة وتمييز المعين عن باقي أنواع الأشكال الهندسية من خلال معرفة وفحص بعض الخصائص والصفات منها:

يعتبر حالةً خاصّةً من متوازي الأضلاع وحالةٌ خاصّةٌ من الدالتون.

قطري المربع يقطعان بعضهما البعض بزوايا قائمة، وأيضاً قطري المعين ينصفان بعضهما البعض بزوايا قائمة.

Report this page